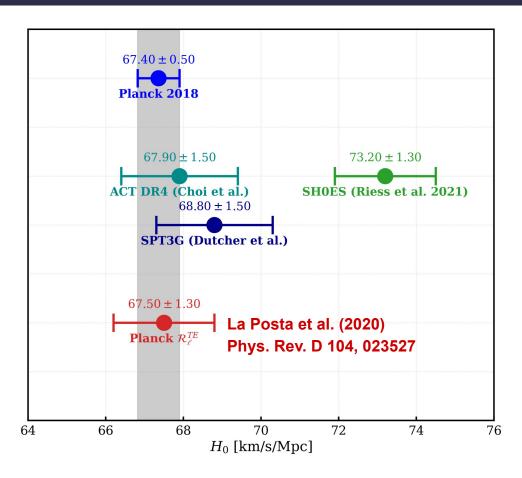
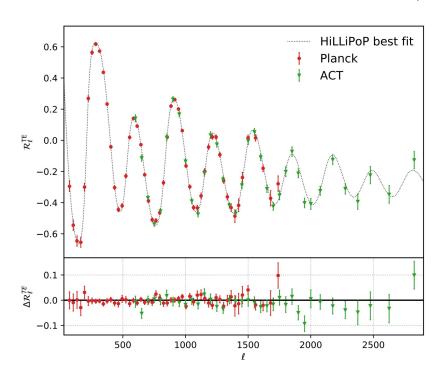
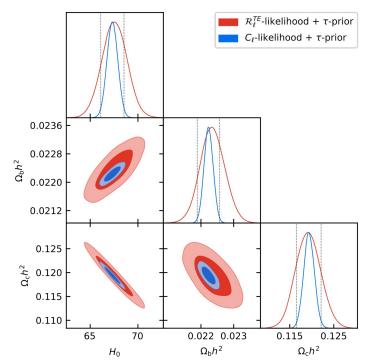


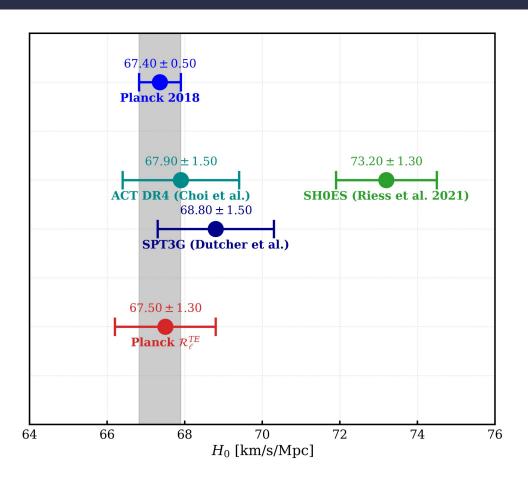
Adrien La Posta - IJClab


The Hubble tension

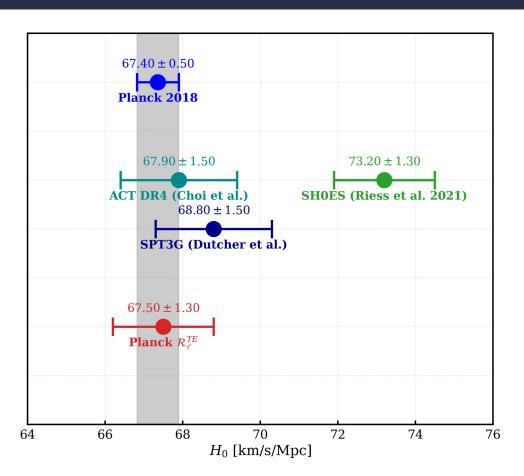
The Hubble tension




The Hubble tension


T-E Correlation coefficient

$$\mathcal{R}_{\ell}^{TE} = \frac{C_{\ell}^{TE}}{\sqrt{C_{\ell}^{TT}C_{\ell}^{EE}}}$$


Solutions to the Hubble tension?

Option 1:

Systematics affecting the local measurements of H₀?

Solutions to the Hubble tension?

Option 1:

Systematics affecting the local measurements of H₀?

Option 2:

Physics beyond Λ CDM that shift the constraints on H_0 derived from the CMB

Beyond ΛCDM

The H_0 Olympics: A fair ranking of proposed models

Nils Schöneberg^{a,*}, Guillermo Franco Abellán^b, Andrea Pérez Sánchez^a, Samuel J. Witte^c, Vivian Poulin^b, Julien Lesgourgues^a

arXiV:2107.10291

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta {\rm AIC}$		Finalist
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	1	✓ ③
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X
$SI\nu+DR$	3	$-19.440^{+0.037}_{-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X
Majoron	3	$-19.380^{+0.027}_{-0.021}$	3.0σ	2.9σ	1	-15.49	-9.49	1	✓ ②
primordial B	1	$-19.390^{+0.018}_{-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	1	✓ ⑨
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	1	-12.27	-10.27	1	✓ •
varying $m_e+\Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	1	-17.26	-13.26	1	✓ ◎
EDE	3	$-19.390^{+0.016}_{-0.035}$	3.6σ	1.6σ	1	-21.98	-15.98	1	✓ ②
NEDE	3	$-19.380^{+0.023}_{-0.040}$	3.1σ	1.9σ	1	-18.93	-12.93	1	✓ ②
EMG	3	$-19.397^{+0.017}_{-0.023}$	3.7σ	2.3σ	1	-18.56	-12.56	1	√ ②
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	1	2.24	2.24	X	X
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X
$\mathrm{DM} \to \mathrm{DR} + \mathrm{WDM}$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X
$\mathrm{DM} \to \mathrm{DR}$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X

Table 1: Test of the models based on dataset $\mathcal{D}_{\text{baseline}}$ (Planck 2018 + BAO + Pantheon), using the direct measurement of M_b by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th column). Eight models pass at least one of these three tests at the 3σ level.

^aInstitute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.

b Laboratoire Univers & Particules de Montpellier (LUPM), CNRS & Université de Montpellier (UMR-5299), Place Euqène Bataillon, F-34095 Montpellier Cedex 05, France.

^cGRAPPA Institute, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

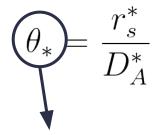
Beyond ΛCDM

The H_0 Olympics: A fair ranking of proposed models

Nils Schöneberg^{a,*}, Guillermo Franco Abellán^b, Andrea Pérez Sánchez^a, Samuel J. Witte^c, Vivian Poulin^b, Julien Lesgourgues^a

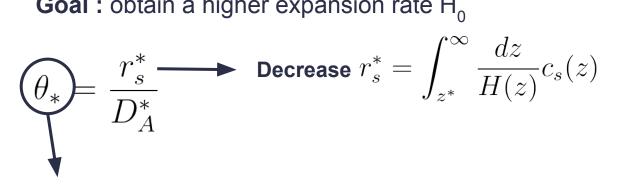
arXiV:2107.10291

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	$\Delta {\rm AIC}$		Finalist
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	1	✓ ③
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X
$SI\nu+DR$	3	$-19.440^{+0.037}_{-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X
Majoron	3	$-19.380^{+0.027}_{-0.021}$	3.0σ	2.9σ	1	-15.49	-9.49	1	✓ ®
primordial B	1	$-19.390^{+0.018}_{-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	1	✓ ()
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	1	-12.27	-10.27	1	✓ •
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	1	-17.26	-13.26	1	✓ 🄞
EDE	3	$-19.390^{+0.016}_{-0.035}$	3.6σ	1.6σ	1	-21.98	-15.98	1	✓ ②
NEDE	3	$-19.380^{+0.023}_{-0.040}$	3.1σ	1.9σ	1	-18.93	-12.93	1	√ ②
EMG	3	$-19.397^{+0.017}_{-0.023}$	3.7σ	2.3σ	1	-18.56	-12.56	1	✓ ②
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	1	2.24	2.24	X	X
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X
$\mathrm{DM} \to \mathrm{DR} {+} \mathrm{WDM}$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X
$\mathrm{DM} \to \mathrm{DR}$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X

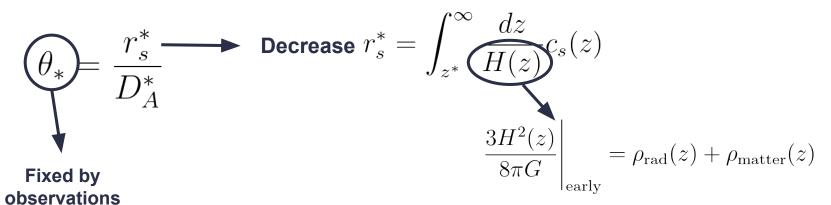

Table 1: Test of the models based on dataset $\mathcal{D}_{\text{baseline}}$ (Planck 2018 + BAO + Pantheon), using the direct measurement of M_b by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th column). Eight models pass at least one of these three tests at the 3σ level.

^aInstitute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.

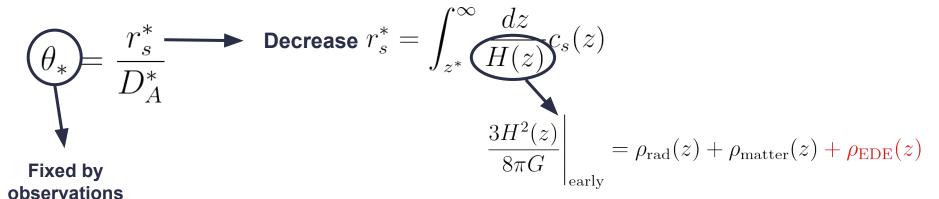
 $^{{}^}bLaboratoire~Univers~\&~Particules~de~Montpellier~(LUPM),~\dot{C}NRS~\&~Universit\'e~de~Montpellier~(UMR-5299),~Place~Eug\`ene~Bataillon,~F-34095~Montpellier~Cedex~05,~France.$


^cGRAPPA Institute, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

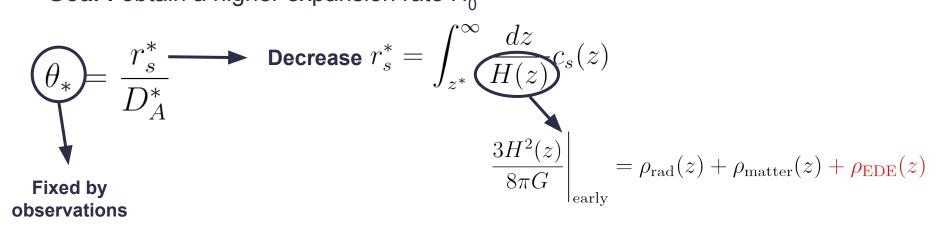
Goal: obtain a higher expansion rate H₀


Fixed by observations

Goal: obtain a higher expansion rate H₀

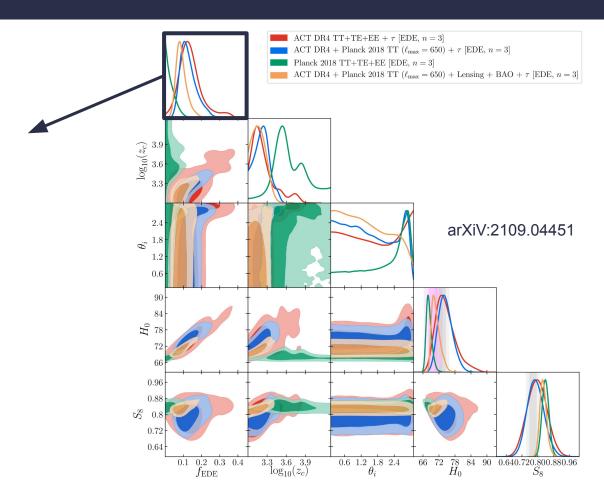


Fixed by observations


Goal: obtain a higher expansion rate H₀

Goal: obtain a higher expansion rate H₀

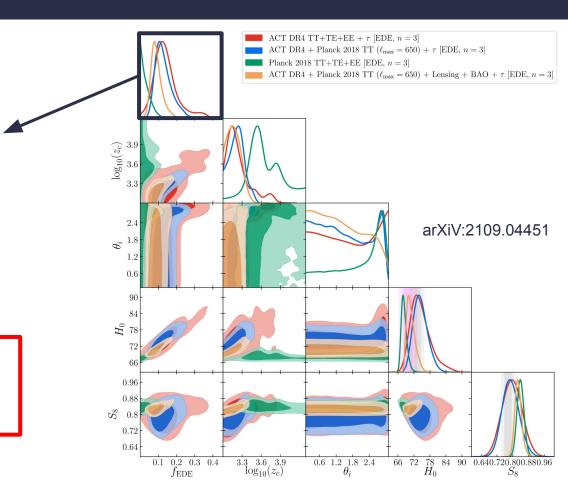
Goal: obtain a higher expansion rate H₀


$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

$$V_n(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]^n$$

- Field initially frozen: act as dark energy at early times
- Starts to oscillate when H~m

Early Dark Energy - ACT DR4 results


- ACT DR4 data shows a preference for EDE (improvement of the x²) with a ~2.5 σ evidence
- However, there is no evidence for EDE in Planck data alone

Early Dark Energy - ACT DR4 results

- ACT DR4 data shows a preference for EDE (improvement of the X²) with a ~2.5 σ evidence
- However, there is no evidence for EDE in Planck data alone

We need additional constraints on EDE

Model independent constraints

Many models have already been proposed to solve the Hubble tension

Model	$\Delta N_{ m param}$
$\Lambda \mathrm{CDM}$	0
$\Delta N_{ m ur}$	1
SIDR	1
mixed DR	2
DR-DM	2
$SI\nu+DR$	3
Majoron	3
primordial B	1
varying m_e	1
varying $m_e+\Omega_k$	2
EDE	3
NEDE	3
EMG	3
CPL	2
PEDE	0
GPEDE	1
$\mathrm{DM} \to \mathrm{DR} + \mathrm{WDM}$	2
$\mathrm{DM} \to \mathrm{DR}$	2

Model independent constraints

Many models have already been proposed to solve the Hubble tension

Model	$\Delta N_{ m param}$
$\Lambda \mathrm{CDM}$	0
$\Delta N_{ m ur}$	1
SIDR	1
mixed DR	2
DR-DM	2
$SI\nu+DR$	3
Majoron	3
primordial B	1
varying m_e	1
varying $m_e+\Omega_k$	2
EDE	3
NEDE	3
EMG	3
CPL	2
PEDE	0
GPEDE	1
$\mathrm{DM} \to \mathrm{DR} + \mathrm{WDM}$	2
$\mathrm{DM} \to \mathrm{DR}$	2

• **Option 1 :** Put constraints on all available model with different experiments to have a strong evidence for some of them ...

 Option 2 : Study methods that allow to put constraints on deviation from ΛCDM in a model independent way

Model independent constraints

Many models have already been proposed to solve the Hubble tension

Model	$\Delta N_{ m param}$
$\Lambda \mathrm{CDM}$	0
$\Delta N_{ m ur}$	1
SIDR	1
mixed DR	2
DR-DM	2
$SI\nu+DR$	3
Majoron	3
primordial B	1
varying m_e	1
varying $m_e+\Omega_k$	2
EDE	3
NEDE	3
EMG	3
CPL	2
PEDE	0
GPEDE	1
$\mathrm{DM} \to \mathrm{DR} {+} \mathrm{WDM}$	2
$\mathrm{DM} \to \mathrm{DR}$	2

• **Option 1 :** Put constraints on all available model with different experiments to have a strong evidence for some of them ...

 Option 2: Study methods that allow to put constraints on deviation from ΛCDM in a model independent way

Idea: Sample the joint posterior distribution of cosmological parameters and extra-parameters modelling the inconsistency between temperature and polarization measurements.

Idea: Sample the joint posterior distribution of cosmological parameters and extra-parameters modelling the inconsistency between temperature and polarization measurements.

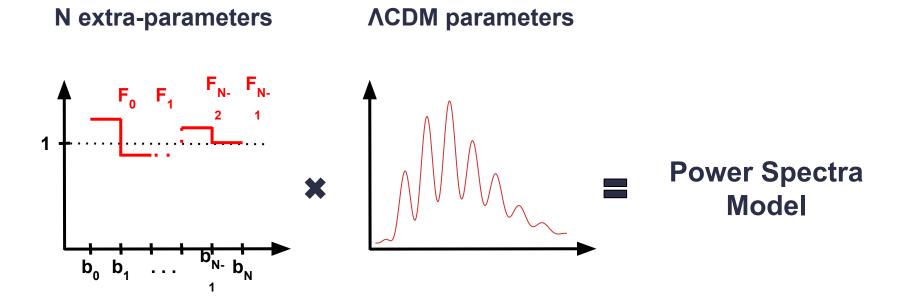
We fix the cosmology with the TT power spectrum $\underbrace{ \tilde{C}_{\ell}^{TT} }_{\text{PS model}} = \underbrace{ C_{\ell}^{TT} }_{\text{\Lambda CDM theory PS}}$

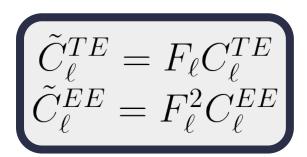
Idea: Sample the joint posterior distribution of cosmological parameters and extra-parameters modelling the inconsistency between temperature and polarization measurements.

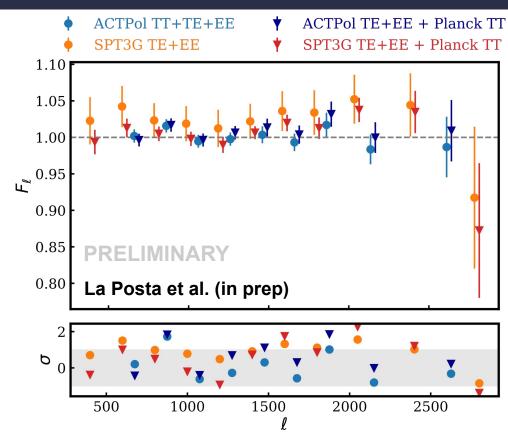
We fix the cosmology with the TT power spectrum $\underbrace{\tilde{C}_{\ell}^{TT}}_{\text{PS model}} \underbrace{\tilde{C}_{\ell}^{TT}}_{\text{ACDM theory PS}}$

We have to define a model for $\ ilde{C}_{\ell}^{TE}$ and $\ ilde{C}_{\ell}^{EE}$

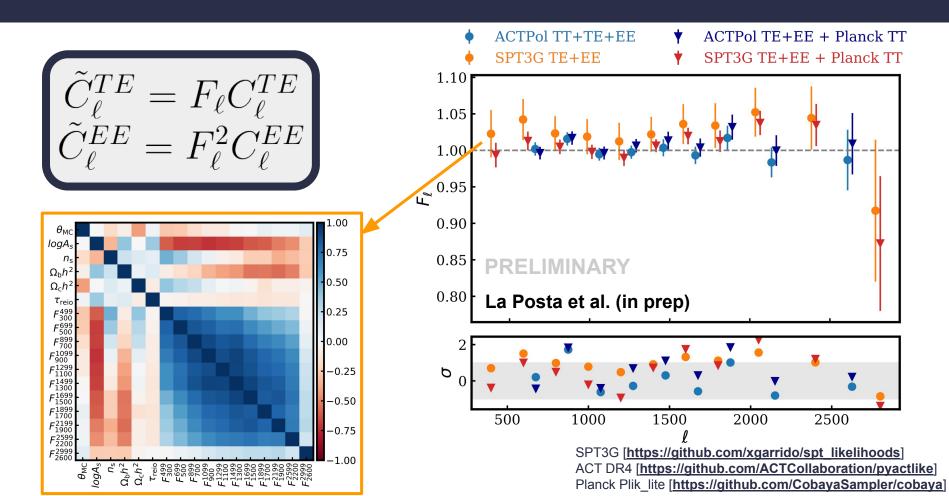
Transfer function

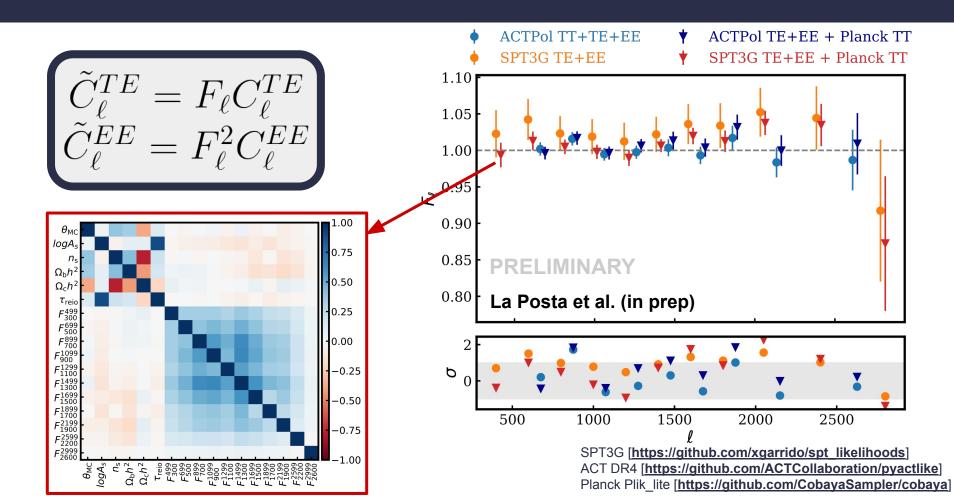

Theory Power Spectrum

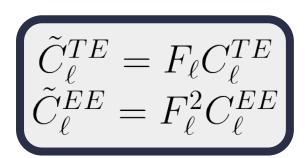


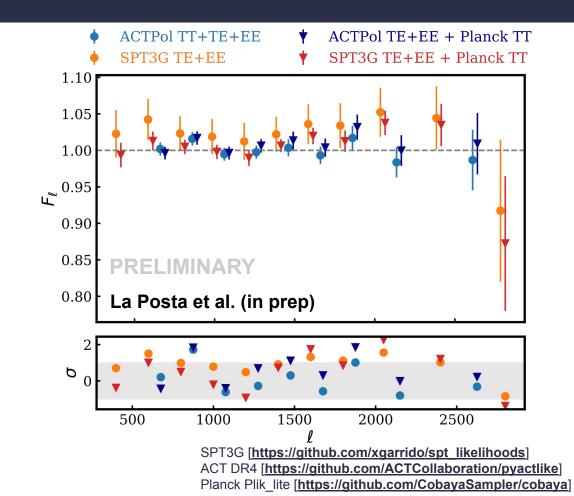

Power Spectra Model

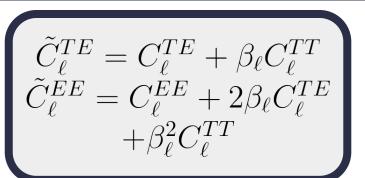
N extra-parameters

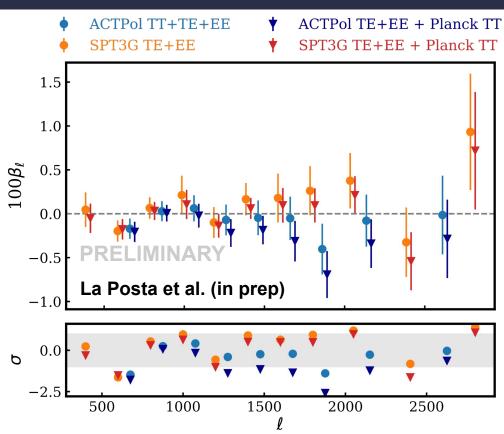




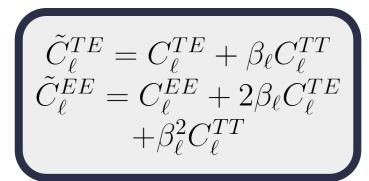


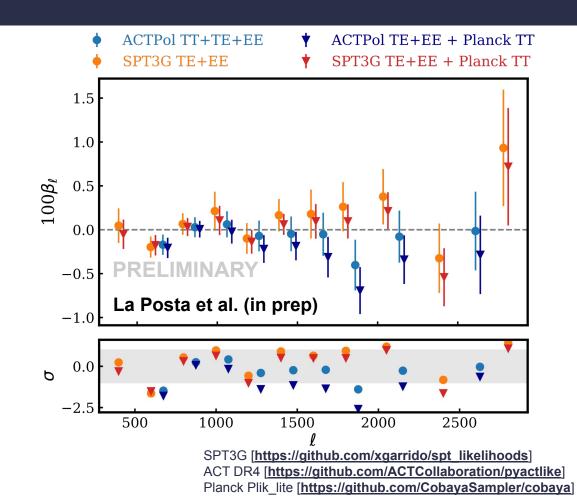

SPT3G [https://github.com/xgarrido/spt_likelihoods]
ACT DR4 [https://github.com/ACTCollaboration/pyactlike]
Planck Plik_lite [https://github.com/CobayaSampler/cobaya]



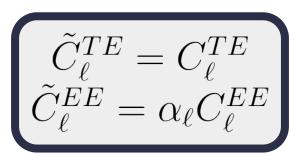


	x ² / dof (PTE)		
ACT TT/TE/EE	6.00/9 (0.74)		
ACT TE/EE + Planck TT	8.64/9 (0.47)		
SPT3G TE/EE	12.82/11 (0.31)		
SPT3G TE/EE + Planck TT	18.39/11 (0.07)		

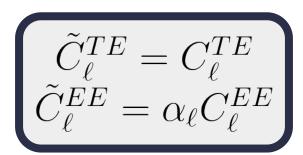

T to E leakage

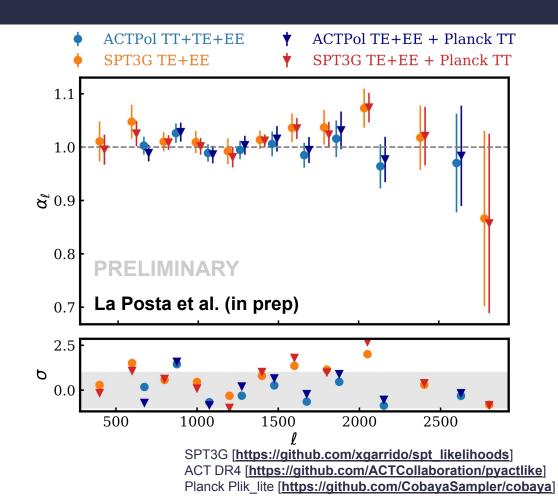


SPT3G [https://github.com/xgarrido/spt_likelihoods]
ACT DR4 [https://github.com/ACTCollaboration/pyactlike]
Planck Plik_lite [https://github.com/CobayaSampler/cobaya]

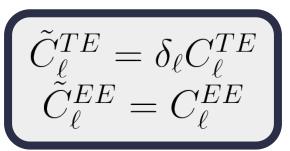

T to E leakage

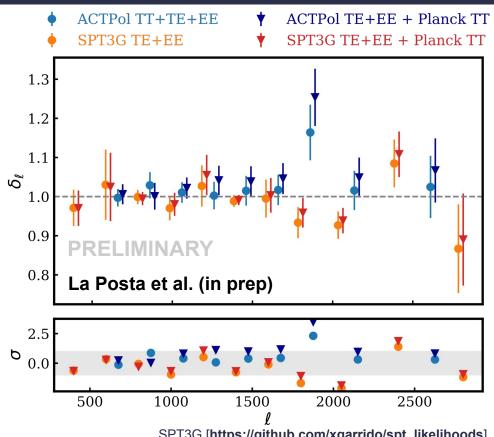
	x ² / dof (PTE)
ACT TT/TE/EE	4.63/9 (0.87)
ACT TE/EE + Planck TT	15.11/9 (0.09)
SPT3G TE/EE	11.06/11 (0.44)
SPT3G TE/EE + Planck TT	9.14/11 (0.61)


EE bias

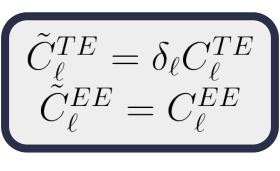


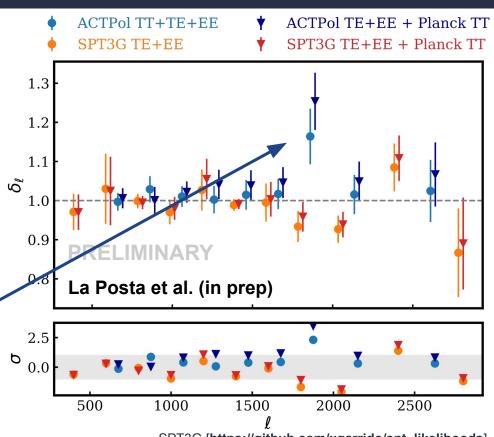
SPT3G [https://github.com/xgarrido/spt_likelihoods]
ACT DR4 [https://github.com/ACTCollaboration/pyactlike]
Planck Plik_lite [https://github.com/CobayaSampler/cobaya]


EE bias



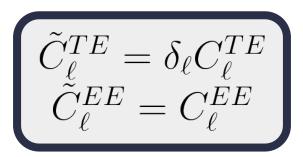
	x ² / dof (PTE)		
ACT TT/TE/EE	4.41/9 (0.88)		
ACT TE/EE + Planck TT	5.81/9 (0.76)		
SPT3G TE/EE	13.78/11 (0.25)		
SPT3G TE/EE + Planck TT	16.82/11 (0.11)		


TE bias

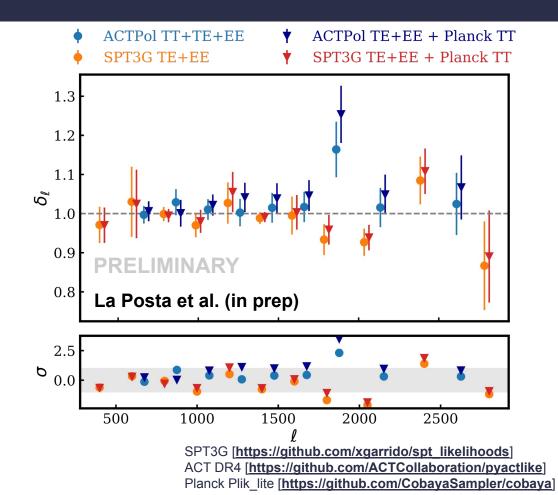


SPT3G [https://github.com/xgarrido/spt_likelihoods]
ACT DR4 [https://github.com/ACTCollaboration/pyactlike]
Planck Plik_lite [https://github.com/CobayaSampler/cobaya]

TE bias



TE amplitude
difference with
respect to Planck
have already been
noticed in Aiola et
al. (2020)



SPT3G [https://github.com/xgarrido/spt_likelihoods]
ACT DR4 [https://github.com/ACTCollaboration/pyactlike]
Planck Plik_lite [https://github.com/CobayaSampler/cobaya]

TE bias

	x ² / dof (PTE)		
ACT TT/TE/EE	6.54/9 (0.68)		
ACT TE/EE + Planck TT	17.43/9 (0.04)		
SPT3G TE/EE	11.93/11 (0.37)		
SPT3G TE/EE + Planck TT	10.68/11 (0.47)		

- We found no significant deviations from ΛCDM in this analysis of Planck, SPT3G, ACTPol data
- With these methods, we are able to spot scale dependent T-E inconsistencies in a model independent way [with respect to ΛCDM]
- These methods also catch deviations due to instrumental systematic effects